

# Antarctic Research Vessel (ARV)

### Operations Study: Design Reference Mission Candidates

Document No.: 5E1-020-R001

Revision: A

ve





Prepared by the Antarctic Support Contractor for the National Science Foundation Office of Polar Programs

#### **Revision History**

| #   | Date                | Section (if applicable) | Author/Editor       | Change Details                                                        |
|-----|---------------------|-------------------------|---------------------|-----------------------------------------------------------------------|
| -   | May 3, 2022         | All                     | B. Felix<br>R. Hein | Initial draft and release.                                            |
| A   | January 26,<br>2023 | All                     | M. Minnig           | Updated to a single DRM and relocated alternate missions to appendix. |
|     |                     |                         |                     |                                                                       |
|     |                     |                         |                     |                                                                       |
|     |                     |                         |                     | PDI                                                                   |
|     |                     |                         |                     |                                                                       |
|     |                     |                         | jÓ                  |                                                                       |
|     |                     |                         |                     |                                                                       |
|     |                     |                         | 1621°               |                                                                       |
|     |                     |                         | )esie               |                                                                       |
|     | :                   | aryc                    | )esie               |                                                                       |
|     | inin                | aryc                    | )esis               |                                                                       |
| -re | imin                | aryc                    | )6515               |                                                                       |

| Prepared by:                                                                                |                                            |                            |
|---------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------|
| Bruce Felix by MAM/mcw (Rev - only)<br>Signature<br>Bruce Felix, Mission Support Integrator | Bruce Felix<br>Print Name<br>r, Leidos ASC | <u>May 3, 2022</u><br>Date |
| Prepared by:                                                                                |                                            |                            |
| Signature<br>Ross Hein, Science Mission Coordinato                                          | Ross Hein<br>Print Name<br>or, Leidos ASC  | <u>1/26/2023</u><br>Date   |
| Checked/Approved by:                                                                        |                                            | nR                         |
| Signature<br>Michael Minnig, Project Engineer, Leid                                         | Michael Minnig<br>Print Name<br>los ASC    | <u>1/26/2023</u><br>Date   |
| ar                                                                                          | Desis                                      |                            |
| oreliminar                                                                                  |                                            |                            |
|                                                                                             |                                            |                            |

#### **Table of Contents**

| 1. Purpose                                                | 1       |
|-----------------------------------------------------------|---------|
| 1.1. Acronyms                                             | 1       |
|                                                           |         |
| 2. DRM Candidate Assumptions                              |         |
| 2.1. Basic Assumptions                                    |         |
| 2.2. Impacts of Seasonality                               |         |
| 2.3. Mission Activity Breakdown                           |         |
| 3. Design Reference Mission: Thwaites/Pine Island Bay     | 5       |
| 3.1. Summary of Expedition                                | 5       |
| 3.2. Operational Area                                     | 6       |
| 3.3. Operational Environment and Temperature              |         |
| 3.4. Vessel Movement                                      | 7       |
|                                                           | <b></b> |
| Appendix A: Alternate Design Reference Mission Candidates |         |
| 1 DRM Candidate (DRMC) 2: Larsen C                        | 12      |
| 1 1 Summary of Expedition                                 | 12      |
| 1.2 Operational Area                                      | 14      |
| 1.3. Vessel Movement                                      |         |
|                                                           |         |
| 2. DRM Candidate (DRMC) 3: Wilkes / George V Coast        | 19      |
| 2.1. Summary of Expedition                                | 19      |
| 2.2. Operational Area                                     | 21      |
| 2.3. Vessel Movement                                      | 21      |
|                                                           | 05      |
| Appendix B: Additional mission profiles                   |         |
| 1. Science Mission 4: GO-SHIP                             |         |
| 1.1. Summary of Expedition                                |         |
| 1.2. Operational Area                                     |         |
| 1.3. Vessel Movements                                     |         |
|                                                           |         |
| 2. Science Mission 5: GEOTRACES                           |         |
| 2.1. Summary of Expedition                                |         |
| 2.2. Operational Area                                     |         |
| 2.3. Vessel Movements                                     |         |

#### **List of Figures**

| Figure 1: 90-day Thwaites Glacier Cruise Track                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2: Example Larsen C cruise track                                                                                                                                                          |
| Figure 3: Eastern Antarctic Glacier cruise track                                                                                                                                                 |
| Figure 4: GO-SHIP block schedule assuming 90 days in austral summer                                                                                                                              |
| Figure 5: GO-SHIP cruise track with 2019 summer sea ice average (pink line) and                                                                                                                  |
| extent (white shading)                                                                                                                                                                           |
| Figure 6: GO-SHIP cruise track with 2019 winter sea ice average (pink line) and extent (white shading)                                                                                           |
| Figure 7: GEOTRACES                                                                                                                                                                              |
| Figure 8: Complete GEOTRACES GP17 cruise track with 2019 summer sea ice median<br>extent (pink line) and March 2019 extent (white shading); No plots available<br>for South Pacific CTD stations |
| Figure 9: Antarctic section of GEOTRACES GP17 cruise track                                                                                                                                       |
| Figure 10: Complete GEOTRACES GP17 cruise track with 2019 winter sea ice median extent (pink line) and September 2019 extent (white shading); No plots                                           |
| available for South Pacific CTD stations                                                                                                                                                         |
| sight                                                                                                                                                                                            |
| List of Tables                                                                                                                                                                                   |
|                                                                                                                                                                                                  |

# List of Tables

| Table 1: ARV "Average" Operation Modes                                    | 4  |
|---------------------------------------------------------------------------|----|
| Table 2: DRM Thwaites/Pine Island Bay - Vessel Movement Summary           | 7  |
| Table 3: DRM Thwaites/Pine Island Bay - Vessel Movement Daily Activities  | 7  |
| Table 4: DRMC2 Larsen C – Vessel Movement Summary                         | 15 |
| Table 5: DRMC2 Larsen C vicinity – Vessel Movement Daily Activities       | 15 |
| Table 6: DRMC3 Wilkes / George V Coast – Vessel Movement Summary          | 21 |
| Table 7: DRMC3 Wilkes / George V Coast - Vessel Movement Daily Activities | 22 |
| Table 8: Summary of GO-SHIP locations and science operations              |    |
| Table 9: Summary of GEOTRACES locations and science operations            | 29 |

#### 1. Purpose

Science funded by NSF will ultimately determine the missions upon which the Antarctic Research Vessel (ARV) embarks. Towards establishing a design reference mission (DRM) to facilitate the preliminary design process, the following science mission profile outlines a conceptual science expedition for the ARV. This expedition is based on historic Antarctic research expeditions and potential future missions. It anticipates the expanded ARV performance and support capabilities beyond the incumbent vessels and includes activities reflecting the ARV program's three primary key performance parameters (KPP):

- Polar Class PC3 vessel with the capability to independently break ice equal to or greater than 4.5 ft thickness at a vessel speed of equal to or greater than 3 knots.
- Mission endurance without replenishment equal to or greater than 90 days underway.
- Provisions for messing, berthing, sanitation, and scientific workspaces for required crew and equal to or greater than 55 science and technical personnel.

The mission activities shown assume fair weather. Adverse weather or ice conditions will preclude some scientific operations. While mission critical operations will still be available, they may take longer or require more resources to complete. When traveling to areas where a high percentage of ice coverage or multi-year ice is expected, the total duration of the mission may need to be reduced due to increased icebreaking activity demands on vessel endurance.

#### 1.1. Acronyms

| ADCP  | Acoustic Doppler Current Profiler         |
|-------|-------------------------------------------|
| ARV   | Antarctic Research Vessel                 |
| ASC   | Antarctic Support Contractor              |
| ASV   | Autonomous Surface Vehicle                |
| ATV   | All-Terrain Vehicle                       |
| AUV   | Autonomous Underwater Vehicle             |
| CFCs  | Chlorofluorocarbons                       |
| CO2   | Carbon Dioxide                            |
| CTD   | Conductivity, Temperature, Depth          |
| DIC   | Dissolved Inorganic Carbon                |
| DP    | Dynamic Positioning                       |
| DRM   | Design Reference Mission                  |
| DRMC  | Design Reference Mission Candidate        |
| JRI   | James Ross Island                         |
| KPP   | Key Performance Parameter                 |
| LADCP | Lowered Acoustic Doppler Current Profiler |
| LARS  | Launch and Recovery System                |
| LYT   | Lyttelton, New Zealand                    |
| NAP   | Northern Antarctic Peninsula              |
| NSF   | National Science Foundation               |
| OPP   | Office of Polar Programs                  |
| PC3   | Polar Class 3                             |
| PCO2  | Partial Pressure of Carbon Dioxide        |
| PUQ   | Punta Arenas, Chile                       |

| ROV           | Remotely Operated Vehicle                                                                  |
|---------------|--------------------------------------------------------------------------------------------|
| SF6<br>SOCCOM | Sulfur Hexafluoride<br>Southern Ocean Carbon and Climate Observations and Modeling Project |
| SS            | Southern Ocean Carbon and Chinate Observations and Modering Project                        |
| TM            | Trace Metal                                                                                |
| TMC           | Trace Metal Clean                                                                          |
| UAV           | Unmanned Aerial Vehicle                                                                    |
| UK            | United Kingdom                                                                             |
| US            | United States                                                                              |
| USBL          | Ultra-Short Baseline                                                                       |
| UVP           | Underwater Vision Profiler                                                                 |
| VMP           | Vertical Microstructure Profiler                                                           |
| VIOL          | Vertical Take-Off and Landing                                                              |
|               | Design, OppR                                                                               |
|               |                                                                                            |
|               | inditi                                                                                     |
|               |                                                                                            |
|               |                                                                                            |
| 010           |                                                                                            |
|               |                                                                                            |
|               |                                                                                            |
|               |                                                                                            |
|               |                                                                                            |

#### 2. DRM Candidate Assumptions

#### 2.1. Basic Assumptions

The following is a list of basic assumptions taken when developing the DRM candidate mission activities and timeline:

- All listed mission activities are based on fair weather conditions towards determining vessel endurance.
- Each science activity listed in the detailed mission profiles assumes 12-hour shift time blocks (AM shift is 12:00AM to 12:00PM, PM shift is 12:00PM to 12:00AM)
- Open water transit assumes vessel speed of 10 knots in World Meteorological Organization Sea State code SS4 or less.
- The ability to conduct all vertical and towed science applications with limited impact to operations in SS4 or less (assuming constant towline tensions of up to 10,000 lbs of tension at 6 knots and 25,000 lbs at 4 knots).
- The amount of time to conduct science operations and to transit between study sites will vary according to weather and ice conditions.
- Mission is based on sailing with a full science complement of 55 personnel. ARV technical staff makeup will vary based on planned mission operations, but are included in the 55-person science complement.
- Deployment and recovery of gliders and moorings occurs as a regular activity. When possible, additional opportunistic deployments may occur beyond the described DRM profile.

#### 2.2. Impacts of Seasonality

In the event of operations interrupted by heavy ice coverage in winter or in particular sites, the Chief Scientist, working in coordination with the captain of the vessel, may adjust operations by reducing the number of stations, prioritizing stations based on accessibility, or altering station locations. During the winter, heavy ice conditions may require more icebreaking between stations and reduce the overall number of days at sea or increase the number of transit days in comparison to science days.

The likelihood of heavy weather delays, which may affect daily science activities or reduce total mission durations accordingly, is higher in the winter season. Heavy weather may require slower vessel transit speeds (3-5 knots) and/or additional engine power to transit between stations.

#### 2.3. Mission Activity Breakdown

Mission activities are categorized into "average" vessel operational modes as listed in Table 1 for the purposes of verifying ARV fuel storage capacity and achieving endurance performance requirements.

| No. | Mode Name                  | Description                                                                                                                                                                                                                                                                           | Average<br>Speed | Average<br>Sea<br>State | Average<br>External<br>Temp |
|-----|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|-----------------------------|
| 1A  | Open water<br>transit      | Generally, mission departure and return to<br>homeport transits and longer transits<br>between sites. Ship is in transit with an<br>optimum speed of 10 knots in Sea State 4<br>or less. There is no use of any deployment<br>equipment. This is equivalent to a cruise<br>condition. | 10 knots         | 4                       | 24.1 ∘F                     |
| 1B  | Acoustically quiet transit | Quiet, survey mode for underwater<br>surveillance and other sonar studies with<br>an average speed of 6 knots in Sea State<br>4 or less.                                                                                                                                              | 6 knots          | 4                       | 24.1 ∘F                     |
| 2   | Icebreaking                | Deck and deployment equipment are not<br>in use. An average of 40% of maximum<br>propulsion power is assumed.                                                                                                                                                                         | 3 knots          | 0                       | 24.1 ∘F                     |
| 3   | On Station                 | Typical science activities include CTD,<br>mammal survey, field science, diving, AUV<br>deployments, light coring. Ship is adrift on<br>a track-line course.                                                                                                                          | 0 knots          | 0                       | 24.1 ∘F                     |
| 4   | On Station, DP             | Typical science activities include ROV<br>deployment, geotechnical drilling, any<br>heave compensation needs, piston long<br>coring. Ship is holding position within a<br>tight margin using dynamic positioning<br>system.                                                           | 0 knots          | 0                       | 24.1 ∘F                     |
| 5   | Deployment                 | Ship is in transit at 6 knots in Sea State 4<br>while towing scientific equipment up to<br>10,000 lbs. Mission operations include: net<br>towing, trawling, dredging, mooring<br>operations. This condition is equivalent to<br>launch/recovery condition.                            | 6 knots          | 4                       | 24.1 ∘F                     |
| 256 | In-Port                    | Ship is docked in port. Activities include<br>loading/unloading cargo and personnel.<br>Most cranes are expected to be used as<br>well as supporting equipment for science<br>activities and workshops.                                                                               | 0 knots          | 0                       | 24.1 ∘F                     |
| 7   | Ice Transit                | Assumes limited floating ice debris with relatively clear transit paths where no ice breaking occurs. Average transit is 6 knots in calm water.                                                                                                                                       | 6 knots          | 0                       | 24.1 ∘F                     |

|  | Table 1: | ARV | "Average" | Operation | Modes |
|--|----------|-----|-----------|-----------|-------|
|--|----------|-----|-----------|-----------|-------|

#### 3. Design Reference Mission: Thwaites/Pine Island Bay

As a basis for the ARV DRM, a 90-day mission, based on previous 62-day cruises to the Amundsen Sea Embayment centered on the study of the Pine Island and Thwaites glaciers was derived to provide a measure for the associated KPP requirement achievement. This study area includes perhaps the most vulnerable glaciers to significant ice loss as a result of climate change and identified as a priority study area for ARV to support. The ARV Design Reference Mission is extended to 90 days by the inclusion of more advanced mission activities representing the ARV design's greater capabilities.

Season: Austral Spring/Summer: (December – March).

#### 3.1. Summary of Expedition

This cruise is an interdisciplinary, international ship- and land-based program to study the potential instability of the Western Antarctic Ice Sheet Thwaites Glacier in Amundsen Sea. The glacier is unstable, and its disintegration is widely considered a bellwether for significant global sea level rise. The factors that drive this instability, and promote the possible breakup of Thwaites, are critical to understanding how fast sea level may rise, and the extent to which we can predict it, develop resilient communities, and save lives.

The cruise portion has three US/UK teams, comprised of 55 participants, working 24-hour operations divided into 12 hour rotations:

- 1. TEAM 1 Evaluating the effects of atmospheric and oceanic processes on the changing regional ice shelves
- 2. TEAM 2 Evaluating the climate-sensitive nature of glacial meltwater-driven micronutrient contributions driving regional productivity and CO2 uptake
- 3. TEAM 3 Benthic coring to evaluate historical drivers of regional instability related to the potential collapse of Thwaites Glacier

Importantly, future work would be enhanced by the more robust ARV icebreaking capabilities that would allow the vessel to reliably penetrate into critically important multi-year ice areas. Ice Radar surveys and UAV Ice Reconnaissance missions will be utilized to improve efficiency and gain access between polynyas in challenging pack ice conditions.

The cruise requires interfacing and support of large third party AUV systems and associated Launch and Recovery Systems (LARS), Hangers and Support vans. A diverse suite of autonomous systems will be utilized to collect broad scientific data including UAVs (UAV Deck support), Gliders (Science Survey boat support), Autonomous Boats (Small Boat/AUV Hanger) and Wave Gliders outside the pack ice. This cruise will also support deployment of multi-season oceanographic mooring arrays. AUV Systems (Hugin 40' LARS, AutoSub 20' Hi-cube Hanger, 20' Support Van for each system) may be used to download mooring data in situations where overhead ice prevents release and recovery.

Additionally, the cruise requires the full suite of physical, chemical and biological related vessel sampling gear, including:

- Multi-beam and Sub-bottom sonars, Hi-PAP USBL
- Multi-spectral radiometers and full suite of Meteorological and Atmospheric sensors, PCO2 (Science mast, Bow mast)

- Corers and Bottom samplers (Mega Core, Box Corer and Kasten Corers, Smith MacIntyre Grab, staged on the working deck
- Piston Long Corer (15m-40m)
- Plankton sampling (Tucker trawl, Bongo/Ring nets)
- Standard and Trace Metal clean CTD rosettes (up to 36 bottles)
- Towed Benthic Camera, live video and high resolution stills (fiber cable)
- Acoustic Tow Body for AutoSub Comms (Starboard side mechanical wire)
- Acoustic locating beacon deployments
- Autonomous surface vehicles, (AutoNaut-5, Wave Glider)
- Sea Gliders
- UAV Systems, both Science and Operations (x1 FRV-90 VTOL, x2 Vector UAVs, x2 Quadcopter UAVs, additional science party UAVs)
- Vertical Microstructure Profiler (VMP), on bolt pattern, stern over-boarded
- Trace Metal Clean (TMC) Lab Vans x2 separated somewhat from coring and other activities
- Moorings/Floatation storage van
- Multiple Science and Cold storage vans
- Shipboard aquaria and incubators, flow through seawater system
- Deck Incubators, flow through seawater system, location not shaded by the ship's structure
- Fully outfitted Aquarium Room, Wet and Dry labs to facilitate sample analysis and allow for the ship to be a sampling platform for both atmospheric and oceanic parameters. Managed sediment/drains
- Dry labs outfitted with chemical storage cabinets and fume hoods.
- 10m Science Survey Work boat for Glider deployment/recovery (pax rated LARS)
  - 6m Rigid hulled open boats (island and sea ice access for bio tagging efforts with seals)
- Large A-frames and Deep Sea winches for deployment and recovery.
- Mooring Winch, on bolt pattern supporting mooring operations aft working deck
- TMC Winch, on bolt pattern supporting TMC operations, over-boarding Starboard handling system
- Stacked Ballast (mild steel) secured on bolt pattern for Moorings
- Silent ship operational capabilities for multi-beam and bio acoustic survey (EK-80)
- Capacity for -80°C freezer space

#### 3.2. Operational Area

Amundsen Sea Embayment, Pine Island Bay, West Antarctica.

#### 3.3. Operational Environment and Temperature

For the DRM, average daily temperature data from the *Nathaniel B. Palmer* between January and March from 2019 to 2022, representing the study site (Thwaites) and some of the Amundsen Sea, was analyzed to determine an average temperature for the 90-day duration Thwaites mission. The lowest average temperature evaluated, -4.4 °C (24.1 °F), with a standard deviation of 2.8 °C (5 °F), is applied as the mission average outdoor air temperature for all DRM activities.

#### 3.4. Vessel Movement

| <b>Total Distance Traveled:</b> | Approx 8,500 Nautical Miles |
|---------------------------------|-----------------------------|
| Start Port:                     | Punta Arenas, Chile         |
| End Port:                       | Punta Arenas, Chile         |

|                                                                                                           | Fair Weather Duration (days)      |      |              |  |  |  |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------|------|--------------|--|--|--|
| Location                                                                                                  | Southern Ocean Amundsen Embayment |      | Amundsen Sea |  |  |  |
| 1A - Open water transit                                                                                   | 10                                | - (0 | -            |  |  |  |
| 1B - Acoustically quiet transit                                                                           | -                                 | 17.5 | - 1          |  |  |  |
| 2 - Icebreaking                                                                                           | 2                                 | 9    | -            |  |  |  |
| 3 - On station                                                                                            | -                                 | 32   | -            |  |  |  |
| 4 - On station, DP                                                                                        | - 6                               | 11.5 | -            |  |  |  |
| 5 - Deployment                                                                                            |                                   | 4    | -            |  |  |  |
| 6 - In-Port                                                                                               | 1                                 | -    | -            |  |  |  |
| 7 - Ice Transit                                                                                           | -                                 | 3    | 1            |  |  |  |
| Totals (91-day total mission duration*)                                                                   | 13                                | 77   | 1            |  |  |  |
| * DRM includes 0.5 days of In-Port activity prior to and following the 90-day science mission duration to |                                   |      |              |  |  |  |

#### Table 2: DRM Thwaites/Pine Island Bay – Vessel Movement Summary

\* DRM includes 0.5 days of In-Port activity prior to and following the 90-day science mission duration to account for fuel burn associated with certain mobilization and de-mobilization activities.

#### Table 3: DRM Thwaites/Pine Island Bay – Vessel Movement Daily Activities

| Activity | / Start | Activity | y End | Activity | Location                     | Operation                              | Cruise  | Activity Type                         | Approx. |
|----------|---------|----------|-------|----------|------------------------------|----------------------------------------|---------|---------------------------------------|---------|
| Date     | Shift   | Date     | Shift | Hours    |                              |                                        | days    |                                       | Mileage |
| 13-Dec   | PM      | 13-Dec   | PM    | 12       | Punta Arenas, Chile<br>(PUQ) | Depart                                 | N/A     | 6 - In-Port                           | 0       |
| 14-Dec   | AM      | 18-Dec   | PM    | 120      | PUQ to Amundsen<br>Embayment | Transit open ocean                     | 1 - 5   | 1A - Open<br>water transit            | 1,320   |
| 19-Dec   | AM      | 20-Dec   | PM    | 48       |                              | Icebreaking into science<br>area       | 6 - 7   | 2 - Icebreaking                       | 144     |
| 21-Dec   | AM      | 22-Dec   | PM    | 48       | Amundsen                     | CTD work                               | 8 - 9   | 3 - On station                        | 0       |
| 23-Dec   | AM      | 23-Dec   | PM    | 24       | Embayment                    | Trace metal tow-fish                   | 9 - 10  | 1B -<br>Acoustically<br>quiet transit | 144     |
| 24-Dec   | AM      | 24-Dec   | AM    | 12       |                              | Sea glider deployment                  | 11      | 3 - On station                        | 0       |
| 24-Dec   | PM      | 27-Dec   | AM    | 72       |                              | Transit - first and second<br>year ice | 11 - 14 | 2 - Icebreaking                       | 216     |
| 27-Dec   | PM      | 28-Dec   | PM    | 36       |                              | CTD work                               | 14 - 15 | 3 - On station                        | 0       |
| 30-Dec   | AM      | 30-Dec   | AM    | 12       |                              | Sea glider deployments                 | 16      | 3 - On station                        | 0       |
| 30-Dec   | PM      | 30-Dec   | PM    | 12       |                              | Transit - first and second<br>year ice | 16      | 2 - Icebreaking                       | 36      |
| 31-Dec   | AM      | 31-Dec   | AM    | 12       |                              | Mega-core/CTD                          | 17      | 4 - On station,<br>DP                 | 0       |

| Activity       | / Start  | Activit        | y End    | Activity | Location | Operation                    | Cruise  | Activity Type   | Approx. |
|----------------|----------|----------------|----------|----------|----------|------------------------------|---------|-----------------|---------|
| Date           | Shift    | Date           | Shift    | Hours    |          |                              | days    |                 | Mileage |
| 31-Dec         | PM       | 31-Dec         | PM       | 12       |          | VMP transect                 | 17      | 1B -            | 72      |
|                |          |                |          |          |          |                              |         | Acoustically    |         |
|                |          |                |          |          |          |                              |         | quiet transit   |         |
| 1-Jan          | AM       | 1-Jan          | AM       | 12       |          | Transit light ice            | 18      | 7 - Ice transit | 72      |
| 1-Jan          | PM       | 1-Jan          | PM       | 12       |          | Sea glider and AUV           | 18      | 3 - On station  | 0       |
|                |          |                |          |          | -        | deployment                   |         |                 |         |
| 2-Jan          | AM       | 2-Jan          | AM       | 12       |          | CTD work                     | 19      | 3 - On station  | 0       |
| 2-Jan          | PIVI     | 2-Jan          | PIVI     | 12       | -        | I ransit to open water       | 19      | 7 - Ice transit | /2      |
| 3-Jan          | AIVI     | 3-Jan          |          | 12       | -        | Small boat ops- seal tagging | 20      | 3 - On station  | 0       |
| 2-J911         | PIVI     | 3-Jan          | PIVI     | 12       |          | CTD WORK                     | 20      |                 | 0       |
| 4-lan          | A N 4    | 4-lan          | <u> </u> | 12       |          | Soo glidor doploymonts       | 21      | 2 On station    | 0       |
| 4-Jan<br>4-Jan | PM       | 4-Jan<br>4-Jan | PM       | 12       |          | Transit to open water        | 21      | 7 - Ice transit | 72      |
| 5-lan          | AM       | 5-lan          | AM       | 12       |          | Mega-core/CTD                | 21      | 4 - On station  | 0       |
| 5 5411         | /        | 5 5411         | ,        |          |          | mega core, crb               |         | DP              | Ũ       |
| 5-Jan          | PM       | 5-Jan          | PM       | 12       |          | VMP transect                 | 22      | 1B -            | 72      |
|                |          |                |          |          |          |                              |         | Acoustically    |         |
|                |          |                |          |          |          |                              |         | quiet transit   |         |
| 6-Jan          | AM       | 6-Jan          | AM       | 12       |          | Sea glider and AUV           | 23      | 3 - On station  | 0       |
|                |          |                |          |          |          | recovery                     |         |                 |         |
| 6-Jan          | PM       | 6-Jan          | PM       | 12       |          | Multi-beam/ sub-bottom       | 23      | 1B-             | 72      |
|                |          |                |          |          |          | survey                       |         | Acoustically    |         |
|                |          |                |          |          |          |                              |         | quiet transit   |         |
| 7-Jan          | AM       | 7-Jan          | AM       | 12       | -        | Transit to open water        | 24      | 7 - Ice transit | 72      |
| 7-Jan          | PM       | 7-Jan          | PM       | 12       |          | CID cast                     | 24      | 3 - On station  | 0       |
| 8-Jan          |          | 8-Jan          |          | 12       | -        | Sea glider deployments       | 25      | 3 - On station  | 0       |
| 8-Jan          | PIVI     | 8-Jan          | PIVI     | 12       |          | kasten/mega/jumbo.coring     | 25      | 4 - On station, | 0       |
| 0-lan          | <u> </u> | Q_lon          | <u> </u> | 12       |          | Towed Ponthic camora         | 26      | 5 - Doploymont  | 0       |
| 2-3411         |          | 2-3411         |          | 12       |          | Survey                       | 20      | 5 - Deployment  | 0       |
| 9-Jan          | PM       | 9-Jan          | PM       | 12       |          | Multi-Beam/Sub bottom        | 26      | 1B -            | 72      |
|                |          |                |          |          |          | survey                       |         | Acoustically    |         |
|                |          |                |          |          |          | ,                            |         | quiet transit   |         |
| 10-Jan         | AM       | 10-Jan         | AM       | 12       |          | Large AUV deployment         | 27      | 3 - On station  | 0       |
| 10-Jan         | PM       | 11-Jan         | PM       | 36       |          | CTD work                     | 27 - 28 | 3 - On station  | 0       |
| 12-Jan         | AM       | 12-Jan         | AM       | 12       |          | AUV recovery                 | 29      | 3 - On station  | 0       |
| 12-Jan         | PM       | 12-Jan         | PM       | 12       |          | Autonomous surface boat      | 29      | 3 - On station  | 0       |
|                |          |                |          |          |          | deployment                   |         |                 |         |
| 13-Jan         | AM       | 13-Jan         | AM       | 12       |          | Kasten/Mega/Box coring       | 30      | 4 - On station, | 0       |
|                |          |                |          |          |          |                              |         | DP              |         |
| 13-Jan         | PM       | 18-Jan         | AM       | /2       | -        | CID and IM CID work          | 30 - 33 | 3 - On station  | 0       |
| 18-Jan         | PIVI     | 18-Jau         | PIVI     | 12       |          | Trace metal tow-fish         | 33      | IB -            | 72      |
|                |          |                |          |          |          |                              |         | aujet transit   |         |
| 19-Jan         | АМ       | 19-lan         | АМ       | 12       |          | Multi-beam/Sub-bottom        | 34      | 1B -            | 72      |
| 13-5011        |          | 15 5411        | ,        |          |          | survey                       | 51      | Acoustically    | /2      |
|                |          |                |          |          |          |                              |         | quiet transit   |         |
| 19-Jan         | PM       | 19-Jan         | PM       | 12       |          | Autonomous surface boat      | 34      | 3 - On station  | 0       |
|                |          |                |          |          | ]        | recovery                     |         |                 |         |
| 20-Jan         | AM       | 20-Jan         | AM       | 12       |          | Large AUV recovery           | 35      | 3 - On station  | 0       |
| 20-Jan         | PM       | 20-Jan         | PM       | 12       |          | Multi-beam/Sub-bottom        | 35      | 1B -            | 72      |
|                |          |                |          |          |          | survey                       |         | Acoustically    |         |
|                |          |                |          |          | 4        | -                            |         | quiet transit   |         |
| 21-Jan         | AM       | 21-Jan         | PM       | 24       |          | Transit - first and second   | 36      | 2 - Icebreaking | 72      |
| 22.1-1         |          | 25.14          | DNA      | 00       | 4        | year ice                     | 27 40   | 10              | F70     |
| 22-Jan         | AM       | 25-Jan         | PM       | 96       |          | IVIUITI-beam/ sub-bottom/    | 37 - 40 | 1B -            | 576     |
|                |          |                |          |          |          | VIVIF SULVEY                 |         | quiet transit   |         |
| 26-lan         | ΔΝΛ      | 28-lan         | ДМ       | 60       | 1        | CTD line                     | 41 - 12 | 3 - On station  | 0       |
| 28-Jan         | PM       | 29-lan         | PM       | 36       | 1        | Kasten/Mega/Box coring       | 43 - 44 | 4 - On station  | 0       |
|                |          |                |          |          |          |                              |         | DP              | Ť       |
| 30-Jan         | AM       | 30-Jan         | AM       | 12       | 1        | Sea glider deployments       | 45      | 3 - On station  | 0       |
| 30-Jan         | PM       | 30-Jan         | PM       | 12       | 1        | Small boat ops- seal tagging | 45      | 3 - On station  | 0       |

1B -

1B -

DP

1B -

DP

1B -

DP 1B -

1B -

1B -Acoustically quiet transit 3 - On station

DP

DP 1B -

Activity Type

5 - Deployment

Acoustically quiet transit 3 - On station

4 - On station, DP

3 - On station

Acoustically quiet transit 4 - On station,

3 - On station

3 - On station

3 - On station

3 - On station

5 - Deployment

Acoustically quiet transit 4 - On station,

3 - On station

3 - On station

Acoustically quiet transit

3 - On station3 - On station

4 - On station,

Acoustically quiet transit 3 - On station

5 - Deployment

3 - On station

Acoustically quiet transit 1B -

Acoustically quiet transit

4 - On Station,

3 - On station

3 - On station

4 - On Station,

Acoustically quiet transit

5 - Deployment

5 - Deployment

Approx. Mileage

0

72

0 0

0

72

0

0

0

0

0

0

72

0

0

0

0

72

0

0

0

72

0

0

0

72

216

72

0

0

0

0

0

0

576

| Activity | v Start | Activit | y End | Activity | Location | Operation                    | Cruise  |
|----------|---------|---------|-------|----------|----------|------------------------------|---------|
| Date     | Shift   | Date    | Shift | Hours    |          |                              | days    |
| 31-Jan   | AM      | 31-Jan  | AM    | 12       |          | Mid-water net tows           | 46      |
| 31-lan   | PM      | 31-Jan  | PM    | 12       |          | Multi-beam/Sub bottom        | 46      |
| 01 04.1  |         | 01 00.  |       |          |          | survey                       |         |
|          |         |         |       |          |          | 50.107                       |         |
| 1-Feh    | ΔΜ      | 1-Feh   | ΔΜ    | 12       |          | Large ALIV deployment        | 47      |
| 1-Feb    | DM      | 2-Eeb   | DM    | 36       |          | Piston long corer            | 47 - 48 |
| 1-160    | 1 101   | 2-160   | 1 101 | 50       |          |                              | 47 - 40 |
| 2 Eob    | AN4     | 2 Eab   | AN4   | 12       |          | Autonomous surface beat      | 49      |
| 5-165    |         | 3-160   |       | 12       |          | deployment                   | 40      |
| 2 Eab    | DN4     | 2 Eab   | DM    | 12       |          | Trace motal tow fish         | 40      |
| S-FED    | PIVI    | 5-reb   | PIVI  | 12       |          | Trace metal tow-fish         | 49      |
|          |         |         |       |          |          |                              |         |
| 4 Fab    | A N 4   | F Fab   | A.N.4 | 26       |          | Distan Long Coror            | F0 F1   |
| 4-reb    | AIVI    | э-гер   | AIVI  | 30       |          | Pistori Long Corer           | 50-51   |
|          |         |         |       | 10       |          |                              |         |
| 5-Еер    | PIM     | 5-Еер   | PM    | 12       |          | Autonomous surface boat      | 51      |
|          |         |         |       |          |          | recovery                     |         |
| 6-Feb    | AM      | 6-Feb   | AM    | 12       |          | Large AUV recovery           | 52      |
| 6-Feb    | PM      | 7-Feb   | AM    | 24       |          | CTD                          | 52 - 53 |
| 7-Feb    | PM      | 7-Feb   | PM    | 12       |          | Large AUV deployment         | 53      |
| 8-Feb    | AM      | 8-Feb   | AM    | 12       |          | Mooring recovery             | 54      |
| 8-Feb    | PM      | 8-Feb   | PM    | 12       |          | VMP transect                 | 54      |
|          |         |         |       |          |          |                              |         |
|          |         |         |       |          |          |                              |         |
| 9-Feh    | АМ      | 10-Feh  | АМ    | 36       |          | BOV deployment x2            | 55 - 56 |
| 5.00     |         | 20.00   |       |          |          |                              |         |
| 10-Eob   | DM      | 10-Eob  | DM    | 12       |          | Small hoat ons- seal tagging | 56      |
| 10-1 CD  |         | 11 Eob  |       | 12       |          | Midwater net tows            | 50      |
| 11-FeD   |         | 12 Feb  |       | 26       |          | CTD and TM CTD work          |         |
| 11-Feb   | PIVI    | 12-Feb  | PIVI  | 30       |          |                              | 57-58   |
| 13-Feb   | AM      | 13-Feb  | AM    | 12       |          | Trace metal tow-fish         | 59      |
|          |         |         |       |          |          |                              |         |
|          |         |         |       |          |          |                              |         |
| 13-Feb   | PM      | 13-Feb  | PM    | 12       |          | Autonomous surface boat      | 59      |
|          |         |         |       |          |          | recovery                     |         |
| 14-Feb   | AM      | 14-Feb  | AM    | 12       |          | Large AUV recovery           | 60      |
| 14-Feb   | PM      | 14-Feb  | PM    | 12       |          | Kasten/Mega/Box coring       | 60      |
|          |         |         |       |          |          |                              |         |
| 15-Feb   | AM      | 15-Feb  | AM    | 12       | r        | Multi-beam/Sub bottom        | 61      |
|          |         |         |       |          |          | survey                       |         |
|          |         |         |       |          |          |                              |         |
| 15-Feb   | PM      | 15-Feb  | PM    | 12       |          | Small boat ops- seal tagging | 61      |
| 16-Feb   | AM      | 16-Feb  | AM    | 12       |          | Midwater net                 | 62      |
|          |         |         |       |          |          | trawl/bioacoustics           |         |
| 16-Feb   | PM      | 18-Feb  | AM    | 48       |          | CTD and TM CTD work          | 62 - 64 |
| 18 Eob   | DM      | 19 Eob  | DM    | 10       |          | Trace motal tow-fish         | 64      |
| 10-160   | FIVI    | 10-160  | FIVI  | 12       |          | Trace metal tow-fish         | 04      |
|          |         |         |       |          |          |                              |         |
| 10 Feb   | A. N. 4 | 21 E-b  | A.N.4 | 20       |          |                              | 65 66   |
| 19-гер   | AIVI    | 21-Feb  | AIVI  | 36       |          | Multi-beam/ sub-bottom       | 65 - 66 |
|          |         |         |       |          |          | survey                       |         |
|          |         |         |       |          |          |                              |         |
| 21-Feb   | PM      | 21-Feb  | PM    | 12       |          | VMP transect                 | 66      |
|          |         |         |       |          |          |                              |         |
|          |         |         |       |          |          |                              |         |
| 22-Feb   | AM      | 22-Feb  | AM    | 12       |          | Small boat ops- seal tagging | 67      |
| 22-Feb   | PM      | 22-Feb  | PM    | 12       |          | Piston Long corer            | 67      |
|          |         |         |       |          |          |                              |         |
| 23-Feb   | AM      | 23-Feb  | AM    | 12       |          | Large AUV deployment         | 68      |
| 23-Feb   | PM      | 23-Feb  | PM    | 12       | 1        | Mooring recovery             | 68      |
| 24-Feb   | AM      | 24-Feh  | AM    | 12       |          | Large AUV recovery           | 69      |
| 24-Feh   | PM      | 24-Feh  | PM    | 12       |          | Piston Long Corer            | 69      |
| 24100    |         | 27100   |       | 14       |          |                              | 55      |
| 25 Eab   | A N 4   | 28 Eab  | DN4   | 06       |          | Multi-boom/ cub bottom       | 70 72   |
| ZD-LGD   | AIVI    | 20-160  |       | 90       |          |                              | 70-73   |
|          |         |         |       |          |          | Survey                       |         |
|          | 1       |         | 1     | 1        | 1        |                              | 1       |

| Activity          | / Start | Activit    | y End | Activity | Location                     | Operation                              | Cruise  | Activity Type              | Approx. |  |
|-------------------|---------|------------|-------|----------|------------------------------|----------------------------------------|---------|----------------------------|---------|--|
| Date              | Shift   | Date       | Shift | Hours    |                              |                                        | days    |                            | Mileage |  |
| 1-Mar             | AM      | 1-Mar      | PM    | 24       |                              | Midwater net tows                      | 74      | 5 – Deployment             | 0       |  |
| 2-Mar             | AM      | 3-Mar      | AM    | 36       |                              | Piston long corer                      | 75 - 76 | 4 – On station,<br>DP      | 0       |  |
| 3-Mar             | PM      | 3-Mar      | PM    | 12       |                              | CTD line                               | 76      | 3 – On station             | 0       |  |
| 4-Mar             | AM      | 5-Mar      | PM    | 48       |                              | Transit - first and second<br>year ice | 77 - 78 | 2 - Icebreaking            | 144     |  |
| 6-Mar             | AM      | 6-Mar      | AM    | 12       |                              | Small boat ops- seal tagging           | 79      | 3 - On station             | 0       |  |
| 6-Mar             | PM      | 6-Mar      | PM    | 12       |                              | Transit - first and second<br>year ice | 79      | 2 - Icebreaking            | 36      |  |
| 7-Mar             | AM      | 8-Mar      | PM    | 48       |                              | Small boat ops- seal tagging           | 80 - 81 | 3 - On station             | 0       |  |
| 9-Mar             | AM      | 10-<br>Mar | PM    | 48       |                              | Transit - first and second<br>year ice | 82 - 83 | 2 - Icebreaking            | 144     |  |
| 11-Mar            | AM      | 11-<br>Mar | PM    | 24       |                              | Transit to open water                  | 84      | 7 – Ice Transit            | 144     |  |
| 12-Mar            | AM      | 12-<br>Mar | PM    | 24       | Amundsen Sea                 | Transit to open water                  | 85      | 7 - Ice transit            | 144     |  |
| 13-Mar            | AM      | 17-<br>Mar | PM    | 120      | Amundsen Sea to PUQ          | Transit open ocean                     | 86 - 90 | 1A - Open<br>water transit | 1,320   |  |
| 18-Mar            | AM      | 18-<br>Mar | AM    | 12       | Punta Arenas, Chile<br>(PUQ) | Arrive Punta Arenas, Chile             | N/A     | 6 – In-Port                | 0       |  |
| inary Design, Or. |         |            |       |          |                              |                                        |         |                            |         |  |
| prelimi           |         |            |       |          |                              |                                        |         |                            |         |  |



#### Figure 1: 90-day Thwaites Glacier Cruise Track

#### **Appendix A: Alternate Design Reference Mission Candidates**

During the development of the ARV DRM, additional mission candidates were evaluated. The Thwaites\Pine Island Bay mission was ultimately selected as it represented the most diverse in terms of science activities and ARV operating modes for a 90-day mission. The following summarizes two additional mission scopes considered for the ARV design.

#### 1. DRM Candidate (DRMC) 2: Larsen C

This Design Reference Mission Candidate is a 90 day cruise to the Larsen C ice shelf to allow for studies focusing on the rapidly changing dynamics on the eastern side of the Antarctic Peninsula.

Austral Spring and Summer: (January – March).

#### 1.1. Summary of Expedition

R

This cruise would focus in areas previously covered by ice shelves that are now exposed to light and atmospheric gas exchange. Changes in ice cover and sea-ice dynamics are altering ecosystem function. This region is also important for deep water formation, which affects global ocean circulation patterns. This would be a

glaciology/geology/biology/physical oceanography collaborative effort. Operations in the area will also allow the support of separate project field camps in the James Ross/Seymore Island area over the duration of the cruise.

- 6-7 science teams, with a full science complement of 55 persons.
- 24 hour operations divided into 12 hour rotations.

With the disintegration of the Larsen Ice shelf large amounts of glacial ice have been added to the multi-year sea ice in the Weddell Sea. Already challenging ice conditions, plus the increased inclusion of glacier ice require robust ship icebreaking capabilities to allow the vessel to more reliably access and operate in critically important multi-year ice areas. Ice Radar surveys and unmanned aerial vehicle (UAV) Ice Reconnaissance missions will also be utilized to improve efficiency and maintain operations in challenging ice conditions with shifting leads and pressure.

This cruise requires the interfacing and support of third party ROV and sea-bed Geo Technical Drilling systems. The Geo Technical drill and Piston Long Core will be used to recover samples from targets previously identified in seismic surveys of the area. These systems have significant power and containerized support equipment requirements.

The science missions also require diverse small boat capabilities to support and enhance the efforts of all groups. Field camp put ins and take outs will be supported by the 10m Landing Craft work boat and a pair of 6m rigid hulled open boats. Whale tagging, biopsy, survey and glider recovery will be supported by 6m rigid hulled open boats and the 10m Science Survey work boat. The Science Survey work boat will also conduct close scale EK-80 surveys and may provide bathymetric surveys of field camp landing areas and other near shore areas of interest. 10m Landing Craft work boat can also support pot fishing in addition to the ship's trawling efforts for benthic survey.

Science autonomous systems will include UAV operations for observations, photogrammetric surveys and sampling for multiple disciplines. The Sea Ice reconnaissance UAV can also be used to conduct daily over flight of the field camps for safety checks. An autonomous surface vehicle (ASV) Wave Glider will be deployed after crossing the Drake and recovered at the end in South Georgia vicinity. Slocum Gliders will provide both short and long time series surveys, including bio-acoustics.

This cruise would require a full complement of scientific equipment, including:

- Multi-beam and Sub-bottom sonars, Hi-PAP USBL, hull mounted ADCP
- Multi-spectral radiometers and full suite of Meteorological and Atmospheric sensors, PCO2 (Science mast, Bow mast)
- Light Sediment Coring samplers (Mega Core, Box Core, Kasten Core,)
- Geotechnical sea-floor drilling rig (Mebo, BGS), 30' Aft Aframe, x7 20' ISO support vans, bolt pattern
- ROV operations (JASON II/Media), LARS/Crane Starboard deployed, x4 20 ISO support vans, bolt pattern
- Standard and Trace Metal Clean (TMC) CTD rosettes (up to 36 bottles) with full complement of physical, chemical and biological sensors
- Autonomous surface vehicles (Wave Glider)
- Slocum Gliders
- UAV Systems, both Science and Operations
- Large plankton nets (MOCNESS, IKMT)
- Benthic Trawls (Blake Trawl, Otter Trawl, Epibenthic sled) and Benthic Camera still/video (YoYo camera)
- TMC Lab Van, x2 Rads Lab Vans
- Moorings/Floatation storage van
- x3 Science van (Core splitter, Core logger, CT Scan, etc.)
- x3 Cold storage vans (drill and piston core storage)
- Shipboard aquaria and incubators, flow through seawater system
- Deck Incubators, flow through seawater system, location not shaded by the ship's structure
- Fully outfitted Aquarium Room, Wet and Dry labs to facilitate sample analysis and allow for the ship to be a sampling and experimental platform for atmospheric, biological and oceanic parameters. Managed sediment/drains
- 10m Science Survey Work boat (focused acoustic surveys, marine mammal support, near shore bathy surveys, pot fishing)
- 10m Landing Craft Work boat (Field camp put in/take out, shore access, pot fishing)
- ATV and trailer for island-based field camp support

- x2 6m Rigid hulled open boats (tagging, biopsy, shore/ice access, glider recovery)
- Large A frames and Deep Sea winches for deployment and recovery.
- Mooring Winch, on bolt pattern supporting mooring operations aft working deck
- TMC Winch, on bolt pattern supporting TMC operations, over-boarding Starboard handling system
- Stacked RR Wheel ballast secured on bolt pattern for Moorings
- Silent ship operational capabilities for multi-beam and bio acoustic survey (EK-80)
- Shipboard Cold rooms for subsampling and experiments
- -80°C freezers for sample storage
- Van with Liquid Nitrogen Generator
- Water wall with on-line sensors connected to SeaWater Intake to take along-track measurements of pCO2, physical and biological variables

#### 1.2. Operational Area

Eastern Antarctic Peninsula, Weddell Sea and South Atlantic Ocean.

The Larsen C ice shelf is most directly accessed from the western Weddell Sea. Departures from the USAP gateway port of Punta Arenas, Chile require 7-10 days. Terminating at the South Africa gateway port would add an additional 2-3 weeks of transit time, reducing science days. For this example cruise, Larsen area work was combined with science along the Scotia Arc which would require 90 days.

Primary sampling areas are:

- James Ross Island
- Former sites of Larsen A and B Ice Shelves, (Scar Inlet)
- Edge of the present Larsen C Ice Shelf
- Scotia Arc
- South Georgia Island/Cumberland Bay

#### **1.3.** Vessel Movement

| <b>Total Distance Traveled:</b> | 5,800 Nautical Miles |
|---------------------------------|----------------------|
| Start Port:                     | Punta Arenas, Chile  |
| End Port:                       | Punta Arenas, Chile  |

#### Table 4: DRMC2 Larsen C – Vessel Movement Summary

|                                        | Fair Weather Duration (days) |                                       |               |            |  |  |  |
|----------------------------------------|------------------------------|---------------------------------------|---------------|------------|--|--|--|
| Location                               | Southern<br>Ocean            | James Ross<br>Island/Larsen<br>B Site | Larsen C Site | Scotia Arc |  |  |  |
| Open water transit                     | 9.5                          | 2                                     | -             | -          |  |  |  |
| Acoustically quiet transit             | -                            | 2.5                                   | 4.5           | 3          |  |  |  |
| Icebreaking                            | 1                            | 8                                     | 11            |            |  |  |  |
| On station                             | -                            | 6                                     | 5.5           | 3.5        |  |  |  |
| On station, DP                         | -                            | 3                                     | 13.5          |            |  |  |  |
| Deployment                             | -                            | 3                                     | 6.5           | 3          |  |  |  |
| In-Port                                | 1                            | -                                     |               | -          |  |  |  |
| Ice Transit                            | -                            | 3                                     | 0.5           | -          |  |  |  |
| Totals (90-day total mission duration) | 11.5                         | 27.5                                  | 41.5          | 9.5        |  |  |  |

#### Table 5: DRMC2 Larsen C vicinity – Vessel Movement Daily Activities

| Activity Start |       | Activity | / End | Activity | Location                                                                 | Operation                                                             | Cruise days | Activity Type              |
|----------------|-------|----------|-------|----------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|----------------------------|
| Date           | Shift | Date     | Loca  | Hours    |                                                                          |                                                                       |             |                            |
|                |       |          | tion  |          |                                                                          |                                                                       |             |                            |
| 5-Jan          | AM    | 5-Jan    | AM    | 12       | Punta Arenas, Chile (PUQ)                                                | Depart                                                                | 1           | In-Port                    |
| 5-Jan          | РМ    | 9-Jan    | РМ    | 108      | PUQ- Trinity Peninsula<br>Glider deploy in open water<br>(Approx 900 nm) |                                                                       | 1 - 4       | Open water<br>transit      |
| 10-Jan         | АМ    | 11-Jan   | AM    | 36       | Prince Gustav Channel                                                    | Transit - first and second year<br>ice (Approx 170 nm)                | 5 - 7       | Icebreaking                |
| 11-Jan         | РМ    | 13-Jan   | PM    | 60       | James Ross Island (JRI)                                                  | On station for paleontology<br>field camp put-in, Small Boat<br>ops   | 7 - 9       | On station                 |
| 14-Jan         | AM    | 17-Jan   | AM    | 84       | South of JRI to Scar Inlet                                               | Transit second and multi-year ice                                     | 10 - 13     | Icebreaking                |
| 17-Jan         | РМ    | 19-Jan   | PM    | 60       | Former Larsen A and B sites                                              | Bio-Acoustic (EK) survey with<br>midwater plankton nets<br>(MOCNESS)  | 13 - 15     | Acoustically quiet transit |
| 20-Jan         | AM    | 21-Jan   | PM    | 48       |                                                                          | Light Coring, Benthic Trawls                                          | 16 - 17     | Deployment                 |
| 22-Jan         | AM    | 24-Jan   | PM    | 72       |                                                                          | ROV Ops                                                               | 18 - 20     | On Station,<br>DP          |
| 25-Jan         | AM    | 27-Jan   | AM    | 60       |                                                                          | CTD-LADCP/TMC                                                         | 21 - 23     | On station                 |
| 27-Jan         | PM    | 27-Jan   | PM    | 12       |                                                                          | Jumbo Piston Coring                                                   | 23          | Deployment                 |
| 28-Jan         | AM    | 28-Jan   | AM    | 12       |                                                                          | Transit and CTD work                                                  | 24          | Open water<br>transit      |
| 28-Jan         | PM    | 28-Jan   | PM    | 12       |                                                                          | Mooring deployment                                                    | 24          | Deployment                 |
| 29-Jan         | AM    | 30-Jan   | AM    | 36       |                                                                          | Transit and CTD work                                                  | 25 - 26     | Open water<br>transit      |
| 30-Jan         | PM    | 2-Feb    | AM    | 72       | Scar Inlet to JRI                                                        | Transit to open water                                                 | 26 - 29     | Ice transit                |
| 2-Feb          | PM    | 3-Feb    | AM    | 24       | JRI                                                                      | On station for paleontology<br>field camp take out, Small<br>Boat ops | 29 - 30     | On station                 |

| 3-Feb            | PM    | 5-Feb            | PM   | 60  | South of JRI to Larsen C site | Transit second and multi-year                           | 30 - 32 | Icebreaking                   |
|------------------|-------|------------------|------|-----|-------------------------------|---------------------------------------------------------|---------|-------------------------------|
| 6-Feb            | AM    | 6-Feb            | AM   | 12  | Edge of Larsen C site         | ICE                                                     | 33      | Icebreaking                   |
| 0100             | 7     | 0100             | 7.11 |     |                               | Bio-Acoustic (FK) survey with                           |         | leebreaking                   |
| 6-Feb            | PM    | 6-Feb            | PM   | 12  |                               | midwater plankton nets<br>(MOCNESS)                     | 33      | Acoustically<br>quiet transit |
| 7-Feb            | AM    | 7-Feb            | AM   | 12  |                               | AUV deployment, Gliders                                 | 34      | On station                    |
| 7-Eeh            | РM    | 10-Eeb           | ΔΜ   | 72  |                               | Bio-Acoustic (EK) survey with midwater plankton pets    | 34 - 37 | Acoustically                  |
|                  |       | 10100            |      | , 2 |                               | (MOCNESS)                                               |         | quiet transit                 |
| 10-Feb           | PM    | 10-Feb           | PM   | 12  |                               | Jumbo Piston Coring                                     | 37      | Deployment                    |
| 11-Feb           | AM    | 11-Feb           | AM   | 12  |                               |                                                         | 38      | On Station                    |
| 11-Feb           | PM    | 11-Feb           | PM   | 12  |                               | Light Coring                                            | 38      | Deployment                    |
| 12-Feb           | AM    | 12-Feb           | AM   | 12  |                               | ice                                                     | 39      | Icebreaking                   |
| 12-Feb           | PM    | 12-Feb           | PM   | 12  |                               | ROV Ops                                                 | 39      | On station,<br>DP             |
| 13-Feb           | AM    | 13-Feb           | AM   | 12  |                               | Jumbo Piston Coring                                     | 40      | Deployment                    |
| 13-Feb           | PM    | 13-Feb           | PM   | 12  |                               | Benthic Trawls and YoYo<br>Camera                       | 40      | Deployment                    |
| 14-Feb           | AM    | 14-Feb           | AM   | 12  |                               | Mooring deployment                                      | 41      | Deployment                    |
| 445.4            |       | 445.4            |      | 42  |                               | Mid-water Plankton                                      |         |                               |
| 14-Feb           | РМ    | 14-Feb           | РМ   | 12  |                               | (MOCNESS)                                               | 41      | Deployment                    |
| 15-Feb           | AM    | 15-Feb           | AM   | 12  |                               | ROV Ops                                                 | 42      | DP                            |
| 15-Feb           | PM    | 15-Feb           | PM   | 12  |                               | ROV Ops                                                 | 42      | On Station,<br>DP             |
| 16-Feb           | AM    | 16-Feb           | AM   | 12  |                               | AUV recovery, Gliders                                   | 43      | On Station                    |
| 16-Feb           | PM    | 16-Feb           | PM   | 12  |                               | Transit - first and second year<br>ice                  | 43      | Icebreaking                   |
| 17-Feb           | AM    | 17-Feb           | AM   | 12  |                               | Bio-Acoustic (EK) survey with<br>midwater plankton nets | 44      | Acoustically quiet transit    |
| 17-Feb           | PM    | 17-Feb           | PM   | 12  |                               | ALIV deployment                                         | 44      | On station                    |
| 17 TCb<br>18-Feb |       | 17 TCb<br>18-Feb |      | 12  |                               |                                                         | 45      | On Station                    |
| 18-Feb           | PM    | 18-Feb           | PM   | 12  |                               | Light Coring                                            | 45      | Deployment                    |
| 19-Feb           |       | 19-Feb           |      | 12  |                               | Benthic Trawls                                          | 46      | Deployment                    |
| 10100            | 7.111 | 13105            | 7.11 |     |                               |                                                         | 10      | On station                    |
| 19-Feb           | PM    | 19-Feb           | PM   | 12  |                               | ROV Ops                                                 | 46      | DP<br>On station              |
| 20-Feb           | AM    | 20-Feb           | РМ   | 24  |                               | Geotechnical drilling                                   | 47      | DP                            |
| 21-Feb           | AM    | 21-Feb           | ▶ PM | 24  |                               | CTD-LADCP/TMC                                           | 48      | On station                    |
| 22-Feb           | AM    | 24-Feb           | AM   | 60  |                               | Geotechnical drilling                                   | 49 - 51 | On station,<br>DP             |
| 24-Feb           | РМ    | 24-Feb           | PM   | 12  |                               | Transit - first and second year<br>ice                  | 51      | Icebreaking                   |
| 25-Feb           | AM    | 25-Feb           | AM   | 12  |                               | GPS Site install, Small Boat<br>Ops                     | 52      | On station                    |
| 25-Feb           | PM    | 27-Feb           | PM   | 60  |                               | Geotechnical drilling                                   | 52 - 54 | On station,                   |
| 28-Feb           | AM    | 28-Feb           | AM   | 12  |                               | Transit - first and second year                         | 55      | Icebreaking                   |
| 28-Feb           | PM    | 28-Feb           | PM   | 12  |                               | AUV recovery                                            | 55      | On station                    |
|                  |       |                  |      |     |                               | Bio-Acoustic (EK) survey with                           |         |                               |
| 1-Mar            | AM    | 1-Mar            | AM   | 12  |                               | midwater plankton nets<br>(MOCNESS)                     | 56      | Acoustically<br>quiet transit |
| 1-Mar            | PM    | 2-Mar            | PM   | 36  |                               | Geotechnical drilling                                   | 56 - 57 | On station,<br>DP             |
| 3-Mar            | AM    | 3-Mar            | AM   | 12  |                               | Mooring deployment                                      | 58      | Deployment                    |
| 3-Mar            | PM    | 3-Mar            | PM   | 12  |                               | CTD-LADCP/TMC                                           | 58      | On Station                    |
| 4-Mar            | AM    | 4-Mar            | AM   | 12  |                               | Light Coring                                            | 59      | Deployment                    |
| 4-Mar            | PM    | 4-Mar            | PM   | 12  |                               | CTD-LADCP/TMC                                           | 60      | On Station                    |
| 5-Mar            | AM    | 6-Mar            | PM   | 48  |                               | Geotechnical drilling                                   | 60 - 61 | On station,<br>DP             |
| 7-Mar            | AM    | 7-Mar            | PM   | 24  |                               | Benthic Trawls                                          | 62      | Deployment                    |

| 8-Mar  | AM | 8-Mar  | AM | 12  |                                    | Transit to station                                                        | 63      | Ice transit                |
|--------|----|--------|----|-----|------------------------------------|---------------------------------------------------------------------------|---------|----------------------------|
| 8-Mar  | PM | 10-Mar | AM | 48  |                                    | Geotechnical drilling                                                     | 63 - 65 | On station,<br>DP          |
| 10-Mar | PM | 10-Mar | PM | 12  |                                    | Piston Long Coring                                                        | 65      | Deployment                 |
| 11-Mar | AM | 13-Mar | AM | 60  | Exit Larsen C                      | Transit - first and second year<br>ice                                    | 66 - 68 | Icebreaking                |
| 13-Mar | PM | 19-Mar | PM | 156 | Larsen C to southern Scotia<br>Arc | Transit second and multi-year ice                                         | 68 - 74 | Icebreaking                |
| 20-Mar | AM | 20-Mar | AM | 12  | Scotia Arc                         | Bio-Acoustic (EK) survey with<br>midwater plankton nets<br>(MOCNESS)      | 75      | Acoustically quiet transit |
| 20-Mar | PM | 20-Mar | PM | 12  |                                    | CTD-LADCP                                                                 | 75      | On station                 |
| 21-Mar | AM | 21-Mar | AM | 12  |                                    | Benthic Trawls                                                            | 76      | Deployment                 |
| 21-Mar | PM | 21-Mar | PM | 12  |                                    | Bio-Acoustic (EK) survey with<br>midwater plankton nets<br>(MOCNESS)      | 76      | Acoustically quiet transit |
| 22-Mar | AM | 22-Mar | AM | 12  |                                    | CTD-LADCP                                                                 | 77      | On station                 |
| 22-Mar | PM | 22-Mar | PM | 12  |                                    | Benthic Trawls                                                            | 77      | Deployment                 |
| 23-Mar | AM | 23-Mar | AM | 12  |                                    | Bio-Acoustic (EK) survey with<br>midwater plankton nets<br>(MOCNESS)      | 78      | Acoustically quiet transit |
| 23-Mar | PM | 23-Mar | PM | 12  |                                    | CTD-LADCP                                                                 | 78      | On station                 |
| 24-Mar | AM | 24-Mar | AM | 12  |                                    | Benthic Trawls                                                            | 79      | Deployment                 |
| 24-Mar | РМ | 24-Mar | PM | 12  |                                    | Bio-Acoustic (EK) survey with<br>midwater plankton nets<br>(MOCNESS)      | 79      | Acoustically quiet transit |
| 25-Mar | AM | 25-Mar | AM | 12  |                                    | CTD-LADCP                                                                 | 80      | On station                 |
| 25-Mar | PM | 25-Mar | PM | 12  |                                    | Benthic Trawls                                                            | 80      | Deployment                 |
| 26-Mar | АМ | 26-Mar | AM | 12  | C                                  | Bio-Acoustic (EK) survey with<br>midwater plankton nets<br>(MOCNESS)      | 81      | Acoustically quiet transit |
| 26-Mar | PM | 26-Mar | PM | 12  |                                    | CTD-LADCP                                                                 | 81      | On station                 |
| 27-Mar | AM | 27-Mar | AM | 12  |                                    | Benthic Trawls                                                            | 82      | Deployment                 |
| 27-Mar | РМ | 27-Mar | PM | 12  |                                    | Bio-Acoustic (EK) survey with<br>midwater plankton nets<br>(MOCNESS)      | 82      | Acoustically quiet transit |
| 28-Mar | AM | 28-Mar | PM | 24  | 7                                  | Stop at South Georgia- Field<br>camp resupply, Landing Craft<br>work boat | 83      | On station                 |
| 29-Mar | AM | 29-Mar | AM | 12  |                                    | Mooring recovery                                                          | 84      | Deployment                 |
| 29-Mar | РМ | 4-Apr  | AM | 144 | South Georgia Larson C -<br>PUQ    | Transit (Approx 1,260 nm)                                                 | 84 - 90 | Open water<br>transit      |
| 4-Apr  | PM | 4-Apr  | PM | 12  | Punta Arenas, Chile (PUQ)          | Arrival                                                                   | 90      | In-Port                    |

![](_page_22_Picture_2.jpeg)

Figure 2: Example Larsen C cruise track

#### 2. DRM Candidate (DRMC) 3: Wilkes / George V Coast

Another potential Design Reference Mission Candidate, this 90 day cruise to the George V Coast would allow for sampling, coring, sea floor mapping, onshore deployments for sampling, and ocean and land-based geophysics adjacent to the Wilkes subglacial basin.

Austral Spring: (December – March).

#### 2.1. Summary of Expedition

The concept is a joint land-based geophysics, geology and ice coring in conjunction with offshore geophysics and coring to quantify the past and potential future contribution of glaciers along the Wilkes Land coast to sea level rise.

The East Antarctic presents challenges with both remoteness and it's difficult ice conditions with harder than typical ice in embayments and other areas of interest. This requires robust ship icebreaking capabilities to allow the vessel to more reliably access and operate in this known challenging area of great scientific interest. Ice Radar surveys and UAV Ice Reconnaissance missions will also be utilized to improve efficiency and maintain operations in challenging ice conditions and to help locate areas of access.

Science autonomous systems will include UAVs, Gliders, Under Ice Vehicle and Autonomous Boat (deployed at the beginning of the cruise and recovered at the end). This cruise will conduct a seismic reflection survey to further resolve favorable coring sites. The cruise will also deploy a series of complex instrumented base time series moorings (Totten M-series) requiring TOGS mooring for orientation (proximity to south magnetic pole).

Natural collaborations exist with Australian, French, New Zealand, and the Chinese Antarctic Programs. All of these NAPs have been significantly challenged working in this area aboard less capable Ice Breakers.

The cruise would also perform US Antarctic Treaty-based inspections at stations along the route.

An extended cruise, such as this, would utilize the ARV as a floating lab, opening up possibilities for running experiments in real time, which are currently mostly limited to station work.

- 6-7 science groups (total of 55 persons) working 24 hours a day.

This cruise would require a full complement of scientific equipment, including:

- Multibeam and Sub-bottom sonars, Hi-PAP USBL
- Multi-spectral radiometers and full suite of Meteorological and Atmospheric sensors, PCO2 (Science mast, Bow mast)
- Light Sediment Coring samplers (Mega Core, Box Core, Kasten Core,)
- Dredges (Rock Dredge, Basket Dredge)
- Piston Long Corer 40-50m, (traction winch, synthetics)

- Seismic Survey, (GI source array, x2 multi-channel streamers), x1 Seismic workshop van, x2 Gun winches, x2 Streamer winches, Seismic compressors (primary and back up), bolt pattern
- Hi-Volume Standard CTD rosette (up to 36 bottles)
- Trace Metal Clean (TMC) CTD rosettes (up to 36 bottles)
- Towed Benthic Camera, Live video with Hi-res stills (fiber cable)
- McClane Pumps
- UAV Systems, both Science (photogrammetrics and ice surfaces) and Operations (Ice Reccy)
- Gliders (Slocum, Improved Sea Gliders)
- Autonomous Boat (Sail Drone)
- TMC Lab Van, Rads Lab Van
- Moorings/Floatation storage van
- Moorings ballast and Instrumented Base assemblies on working deck
- x3 Science van (Core splitter, Core logger, CT Scan etc.)
- x2 Cold storage vans (piston core storage)
- Silent ship operational capabilities for multibeam and sub bottom surveys
- Shipboard aquaria and incubators, flow through seawater system
- Deck Incubators, flow through seawater system, location not shaded by the ship's structure
- Fully outfitted Aquarium Room, Wet and Dry labs to facilitate sample analysis and allow for the ship to be a sampling platform for both atmospheric and oceanic parameters. Managed sediment/drains.
- Shipboard Cold rooms for subsampling and experiments and –80°C freezers for sample storage and vans with Liquid Nitrogen Generator.
- Wet labs outfitted with chemical storage cabinets and fume hoods.
- Large A frames and Deep Sea winches for deployment and recovery.
- Mooring Winch, on bolt pattern supporting mooring operations aft working deck
- TMC Winch, on bolt pattern supporting TMC operations, over-boarding Starboard handling system
- 10m Science Survey Work boat (Station inspections, Glider deploy/recovery, near shore bathy surveys)
- 6m Rigid hulled open boats (sea ice access)
- 10m Landing Craft Work boat (foreign station resupply efforts)

#### 2.2. Operational Area

Regions off Wilkes and George V Land, East Antarctica and Dumont d'Urville Sea

George V Coast can be accessed from McMurdo, Jang Bogo or Dumont d'Urville Stations. Timing is critical to allow access due to sea ice.

Primary sampling areas are:

- Mertz- Ninnis trough
- Wilkes subglacial basin
- Dumont d'Urville Sea
- Continental margin off the Totten Glacier and Holmes Glacier (Wilkes Land)

#### 2.3. Vessel Movement

| Total Distance Traveled: | 9,800 Nautical Miles |
|--------------------------|----------------------|
| Start Port:              | Lyttelton, NZ        |
| End Port:                | Lyttelton, NZ        |

PDK

#### Table 6: DRMC3 Wilkes / George V Coast – Vessel Movement Summary

|                                        | Fair Weather Duration (days) |                 |                     |                        |  |  |  |
|----------------------------------------|------------------------------|-----------------|---------------------|------------------------|--|--|--|
| Location                               | Southern<br>Ocean            | Casey to Totten | Totten to<br>Holmes | Holmes to Jang<br>Bogo |  |  |  |
| Open water transit                     | 16                           | 1               | 1.5                 | 3                      |  |  |  |
| Acoustically quiet transit             | -                            | 6.5             | 14.5                | 5                      |  |  |  |
| Icebreaking                            | -                            | 2               | -                   | 1.5                    |  |  |  |
| On station                             | -                            | 2               | 7                   | 1.5                    |  |  |  |
| On station, DP                         | -                            | 1.5             | 8                   | -                      |  |  |  |
| Deployment                             | -                            | 2               | 7.5                 | 1                      |  |  |  |
| In-Port                                | 1.0                          | -               | -                   | -                      |  |  |  |
| Ice Transit                            | -                            | 3               | 1.5                 | 3.5                    |  |  |  |
| Totals (90-day total mission duration) | 16.5                         | 18              | 40                  | 15.5                   |  |  |  |

#### Table 7: DRMC3 Wilkes / George V Coast – Vessel Movement Daily Activities

| Activity | / Start | Activity | / End        | Activity | Location                     | Operation                                      | Cruise days | Activity Type                 |
|----------|---------|----------|--------------|----------|------------------------------|------------------------------------------------|-------------|-------------------------------|
| Date     | Shift   | Date     | Loca<br>tion | Hours    |                              |                                                |             |                               |
| 22-Dec   | AM      | 22-Dec   | AM           | 12       | Lyttelton, NZ                | Depart                                         | 1           | In-Port                       |
|          |         |          |              |          | LYT- ice edge (Approx. 2,000 | Transit open ocean - drifter                   |             | 0                             |
| 22-Dec   | PM      | 30-Dec   | PM           | 204      | nm)                          | buoys, Sail Drone deploy en                    | 1 - 9       | Open water                    |
|          |         |          |              |          |                              | route                                          |             | Transit                       |
| 31-Dec   | AM      | 1-Jan    | PM           | 48       | Ice edge to Casey Station    | Transit - first and second year ice            | 10 - 11     | Icebreaking                   |
| 2-Jan    | AM      | 2-Jan    | PM           | 24       | Casey Station                | Treaty inspection                              | 12          | On station                    |
| 3-Jan    | AM      | 3-Jan    | AM           | 12       | Casey area to Totten Glacier | Transit open ocean                             | 13          | Open Water<br>Transit         |
| 3-Jan    | PM      | 5-Jan    | PM           | 60       |                              | Multi-beam/ sub-bottom/<br>magnetometer survey | 13 - 15     | Acoustically<br>quiet transit |
| 6-Jan    | AM      | 6-Jan    | AM           | 12       |                              | Rock Dredge/Basket Dredge                      | 16          | Deployment                    |
| <u> </u> |         |          |              | 26       |                              | Multi-beam/ sub-bottom/                        | 16 17       | Acoustically                  |
| 6-Jan    | PM      | 7-Jan    | PM           | 36       |                              | magnetometer survey                            | 16 - 17     | quiet transit                 |
| 8-Jan    | AM      | 8-Jan    | PM           | 24       |                              | Light Coring                                   | 17 - 18     | Deployment                    |
| 9-Jan    | AM      | 10-Jan   | AM           | 36       |                              | Multi-beam/ sub-bottom/                        | 19 - 20     | Acoustically<br>quiet transit |
| 10-lan   | PM      | 10-lan   | PM           | 12       |                              | CTD/TMC/McClane numps                          | 20          | On station                    |
| 10 5011  |         | 10 5411  |              |          |                              | Multi-beam/ sub-bottom/                        | 20          | Acoustically                  |
| 11-Jan   | AM      | 11-Jan   | PM           | 24       |                              | magnetometer survey                            | 21          | quiet transit                 |
| 12-Jan   | AM      | 12-Jan   | PM           | 24       |                              | Piston Long Coring                             | 22          | On Station,<br>DP             |
| 13-Jan   | AM      | 15-Jan   | PM           | 72       |                              | CTD line + Transit light ice                   | 23 - 25     | Ice transit                   |
| 16-Jan   | AM      | 16-Jan   | AM           | 12       |                              | Transit open ocean                             | 26          | Open Water<br>Transit         |
| 16-Jan   | PM      | 16-Jan   | PM           | 12       |                              | CTD/TMC/McClane pumps                          | 26          | On station                    |
| 17-Jan   | AM      | 17-Jan   | AM           | 12       |                              | Light Coring                                   | 27          | Deployment                    |
| 17-Jan   | PM      | 17-Jan   | PM           | 12       | 06-                          | Piston Long Coring                             | 27          | On station,<br>DP             |
| 18-Jan   | AM      | 20-Jan   | AM           | 60       | Totten to Holmes Glacier     | Transit light ice                              | 28 - 29     | Ice Transit                   |
| 20-Jan   | PM      | 20-Jan   | PM           | 12       |                              | Light Coring                                   | 29          | Deployment                    |
| 21-Jan   | AM      | 21-Jan   | AM           | 12       |                              | Rock Dredge/Basket Dredge                      | 30          | Deployment                    |
| 21-Jan   | PM      | 1-Feb    | AM           | 264      |                              | Seismic survey                                 | 30 - 42     | Acoustically<br>quiet transit |
| 1-Feb    | PM      | 1-Feb    | PM           | 12       |                              | Light Coring                                   | 42          | Deployment                    |
| 2-Feb    | AM 🚽    | 2-Feb    | PM           | 24       |                              | Light Coring                                   | 43          | Deployment                    |
| 3-Feb    | АМ      | 3-Feb    | АМ           | 12       |                              | Transit open water                             | 44          | Open Water<br>Transit         |
| 3-Feb    | PM      | 3-Feb    | PM           | 12       |                              | Light Coring                                   | 44          | Deployment                    |
| 4-Feb    | AM      | 4-Feb    | PM           | 24       |                              | Piston Long Coring                             | 45          | On station,<br>DP             |
| 5-Feb    | AM      | 5-Feb    | AM           | 12       |                              | Transit open water                             | 46          | Open Water<br>Transit         |
| 5-Feb    | PM      | 5-Feb    | PM           | 12       |                              | Light Coring                                   | 46          | Deployment                    |
| 6-Feb    | AM      | 7-Feb    | AM           | 36       |                              | Piston Long Coring                             | 47 - 48     | On station,<br>DP             |
| 7-Feb    | PM      | 11-Feb   | PM           | 108      |                              | CTD- LADCP/TMC line-<br>Holmes Glacier face    | 48 - 52     | On station                    |
| 12-Feb   | AM      | 12-Feb   | AM           | 12       |                              | Towed Benthic camera                           | 53          | Deployment                    |
| 12-Feb   | PM      | 12-Feb   | PM           | 12       |                              | Piston Long Coring                             | 53          | On station,                   |
| 12 Eab   | 0.04    | 12 Eab   | 0.04         | 12       |                              | Light Coring                                   | E 4         | Doploymont                    |
| T2-LGD   | AIVI    | 12-LGD   | AIVI         | 12       |                              |                                                | 54          |                               |
| 13-Feb   | PM      | 13-Feb   | PM           | 12       |                              | Transit open water                             | 54          | Transit                       |
| 14-Feb   | AM      | 14-Feb   | AM           | 12       |                              | Towed Benthic camera<br>transect               | 55          | Deployment                    |
| 14-Feb   | PM      | 14-Feb   | PM           | 12       |                              | Light Coring                                   | 55          | Deployment                    |
| 15-Feb   | AM      | 16-Feb   | AM           | 36       |                              | Light Coring                                   | 56 - 57     | Deployment                    |

|   | 16-Feb     | PM   | 18-Feb           | AM    | 48  |                                             | Piston Long Coring                     | 57 - 59 | On station,<br>DP     |
|---|------------|------|------------------|-------|-----|---------------------------------------------|----------------------------------------|---------|-----------------------|
| Ē | 18-Feb     | PM   | 18-Feb           | PM    | 12  |                                             | Mooring deployment                     | 59      | Deployment            |
|   | 19-Feb     | AM   | 19-Feb           | AM    | 12  |                                             | CTD- LADCP/TMC/McClane                 | 60      | On station,           |
| - | 10 Eob     | DM   | 10 Eob           | DM    | 12  |                                             | pumps                                  | 60      | Deployment            |
| - | 20-Eob     |      | 19-Feb<br>20-Eob |       | 12  |                                             |                                        | 61      | Deployment            |
| - | 20-Feb     | Alvi | 20-Feb           | Alvi  | 12  |                                             | Multi boom ( sub bottom (              | 01      | Acoustically          |
|   | 20-Feb     | PM   | 22-Feb           | PM    | 60  |                                             | Magnetometer survey                    | 61 - 63 | Acoustically          |
| - |            |      |                  |       |     |                                             |                                        |         | quiet transit         |
|   | 23-Feb     | AM   | 25-Feb           | AM    | 60  |                                             | pumps                                  | 64 - 66 | On station            |
|   | 25-Feb     | PM   | 25-Feb           | PM    | 12  |                                             | Light Coring                           | 66      | Deployment            |
|   | 26-Feb     | AM   | 26-Feb           | AM    | 12  |                                             | Towed Benthic camera<br>transect       | 67      | Deployment            |
|   | 26-Feb     | PM   | 26-Feb           | PM    | 12  |                                             | Blake trawl/Mac Grab/Rock<br>dredge    | 67      | Deployment            |
|   | 27-Feb     | AM   | 28-Feb           | AM    | 36  | Holmes Glacier to Dumont<br>d'Urville       | Transit - first and second year<br>ice | 68 - 69 | Icebreaking           |
|   | 28-Feb     | PM   | 28-Feb           | PM    | 12  | Arrive Dumont d'Urville                     | Treaty inspection                      | 69      | On station            |
|   |            |      |                  |       | 40  | d'Urville to Mertz Glacier                  |                                        | co 5    | Open Water            |
|   | 1-Mar      | AM   | 1-Mar            | AM    | 12  |                                             | Transit open water                     | 69.5    | Transit               |
|   | 4          | 514  | 2.14.            | 514   | 60  |                                             | Multi-beam/ sub-bottom/                | 70 73   | Acoustically          |
|   | 1-Mar      | PIN  | 3-Iviar          | PIVI  | 60  |                                             | magnetometer survey                    | 70-72   | quiet transit         |
|   | 4-Mar      | AM   | 4-Mar            | AM    | 12  |                                             | Rock Dredge/Basket Dredge              | 73      | Deployment            |
|   | 4          | DNA  | Г.Ман            |       | 20  |                                             | Multi-beam/ sub-bottom/                | 73 74   | Acoustically          |
|   | 4-11101    | PIVI | 2-IVIDI          | PIVI  | 30  |                                             | magnetometer survey                    | 73-74   | quiet transit         |
|   | 6-Mar      | AM   | 6-Mar            | AM    | 12  |                                             | Light Coring                           | 75      | Deployment            |
|   | 6-Mar      | DM   | 6-Mar            | DM    | 12  |                                             | CTD-LADCP/TMC/McClane                  | 75      | On station            |
|   | U-IVIAI    | FIVI | 0-iviai          | FIVI  | 12  |                                             | pumps                                  | 75      | Onstation             |
|   | 7-Mar      |      | 7-Mar            | PM    | 24  |                                             | Multi-beam/ sub-bottom/                | 76      | Acoustically          |
|   | 7 10101    |      | 7 10101          | 1 101 | 27  | C                                           | magnetometer survey                    | 70      | quiet transit         |
|   | 8-Mar      | AM   | 11-Mar           | AM    | 84  |                                             | CTD line + Transit light ice           | 77 - 80 | Ice Transit           |
|   | 11-Mar     | PM   | 13-Mar           | PM    | 60  | Mertz-Ninnis Glacier to Jang<br>Bogo        | Transit open ocean                     | 80 - 82 | Open Water<br>Transit |
|   | 14-Mar     | AM   | 14-Mar           | AM    | 12  | Arrive Jang Bogo                            | Treaty inspection                      | 83      | On station            |
|   | 14-Mar     | PM   | 21-Mar           | PM    | 180 | Jang Bogo to Lyttleton<br>(Approx 1,900 nm) | Transit open ocean                     | 83 - 90 | Open Water<br>Transit |
|   | <b>P</b> 1 | 6    | in               | , il  | 7.0 |                                             |                                        |         |                       |

![](_page_28_Figure_2.jpeg)

Figure 3: Eastern Antarctic Glacier cruise track

#### Appendix B: Additional mission profiles

The following information includes additional mission profiles researched during the development of the ARV DRM.

#### 1. Science Mission 4: GO-SHIP

#### Figure 4: GO-SHIP block schedule assuming 90 days in austral summer

![](_page_29_Figure_6.jpeg)

#### 1.1. Summary of Expedition

The GO-SHIP science expedition repeats sampling of the Pacific Ocean S04P hydrographic line for the US Global Ocean Carbon and Repeat Hydrography Program. The survey of the line consists of vertical deployment operations – CTDs, LADCP, UVP, and water samples as well as underway multi-beam data collection. Sample stations are spaced approximately 30 nm from each other and target sites range from 200 m in depth to full depth profiles (usually within 10 m of the bottom). During transits and in between sample locations numerous types of floats are deployed including SOCCOM floats, Argo floats – FSU floats, CSCIRO floats, EM-APEX floats as well as drifters.

Water samples are measured for features such as salinity, dissolved oxygen, nutrients, dissolved inorganic carbon (DIC), pH, alkalinity, and CFCs/SF6. Some sampling water would be stored and shipped back to CONUS for shore based laboratory analysis.

#### 1.2. Operational Area

Pacific and Ross Sea. Sampling area begins at Cape Adare (70.45°S, 168.48°W) to 73.48°W along the 67°S line to the Antarctic Peninsula. It includes spurs south from 67°S along the 150°W end of the P16S line and also along the 170°E, 170°W, and 103°W lines all the way to the continental shelf in order to complete the southern ends of the P14S, P15S, and P18S lines.

#### 1.3. Vessel Movements

| Total Distance Traveled: | 9,265 Nautical Miles |
|--------------------------|----------------------|
| Start Port:              | Hobart, Australia    |
| End Port:                | Punta Arenas, Chile  |

| Location                                | Activity Type                     | Activity Detail          | Summer<br>Duration<br>(days) | Winter<br>Duration<br>(days) |
|-----------------------------------------|-----------------------------------|--------------------------|------------------------------|------------------------------|
| Southern Ocean                          | Open water<br>transit             | Transit to study area    | 8                            | 13                           |
| Ross Sea/Southern<br>Ocean/Amundsen Sea | On station                        | CTD - up to 158 stations | 46                           | 30                           |
| Ross Sea/Southern<br>Ocean/Amundsen Sea | Open water<br>transit/Ice Transit | Transit between stations | 30                           | 38                           |
| Palmer Peninsula Region                 | Open water<br>transit             | Transit from study area  | 6                            | 9                            |
| Total                                   |                                   |                          | 90                           | 90                           |

## Figure 5: GO-SHIP cruise track with 2019 summer sea ice average (pink line) and extent (white shading)

![](_page_30_Figure_5.jpeg)

![](_page_31_Figure_2.jpeg)

![](_page_31_Figure_3.jpeg)

#### 2. Science Mission 5: GEOTRACES

#### Figure 7: GEOTRACES

![](_page_32_Figure_4.jpeg)

#### 2.1. Summary of Expedition

The GEOTRACES science expedition will measure a broad suite of tracer elements, radioisotopes and stable isotopes due to the role they play in regulating primary production and as tracers for both past and present biological, biogeochemical, and physical processes. This 90-day expedition will provide the science party an opportunity to conduct a series of transects across the Amundsen Sea sector of the Antarctic continental margin and also the South Pacific sector (roughly along the 150W line) of the GP17 transect line. The science team plans to sample approximately 60 hydrographic sampling stations – 30 of the sample stations lie in the Antarctic sector of the GP17 area. Vertical sampling operations will be primarily CTDs and TMC CTDs to depths ranging from less than 1000m to 3000m. Surface water sampling using a small boat (Ancillary Operations) or TMC towfish system (Towed Operations) and sediment sampling with a multi-corer (Vertical Operations) may also be conducted at sample stations on the continental shelf. Timing at stations will vary between 5 to 30 hours.

#### 2.2. Operational Area

Amundsen Sea region with focus on the Amundsen Sea polynya all the way up to the South Pacific roughly following the 150W line north toward Tahiti.

#### 2.3. Vessel Movements

| <b>Total Distance Traveled:</b> | 8,785 Nautical Miles |
|---------------------------------|----------------------|
| Start Port:                     | Punta Arenas, Chile  |
| End Port:                       | Pape'ete, Tahiti     |

| Location                         | Activity Type                     | Activity Detail                                           | Summer<br>(days) | Winter<br>(days) |  |
|----------------------------------|-----------------------------------|-----------------------------------------------------------|------------------|------------------|--|
| Drake Passage/<br>Southern Ocean | Open water transit                | Punta Arenas to<br>Amundsen Sea                           | 8                | 13               |  |
| Amundsen Sea                     | On station                        | 30 Sample Stations- CTD, etc.                             | 20               | 16               |  |
| Amundsen Sea                     | Deployment                        | Towing when possible<br>between stations                  | 0                | 0                |  |
| Amundsen Sea                     | On station                        | Surface water sampling-<br>small boat or manned<br>basket | 2                | 2                |  |
| Amundsen Sea                     | Open water<br>transit/Ice Transit | Transit between stations                                  | 24               | 28               |  |
| South Pacific                    | On station                        | 30 Sample Stations- CTD, etc.                             | 28               | 23               |  |
| South Pacific                    | Deployment                        | Towing between stations                                   | 0                | 0                |  |
| South Pacific                    | Open water transit                | Transit between stations                                  | 4                | 4                |  |
| South Pacific                    | Open water transit                | South Pacific To Pape'ete                                 | 4                | 4                |  |
| Total                            |                                   |                                                           | 90               | 90               |  |

Figure 8: Complete GEOTRACES GP17 cruise track with 2019 summer sea ice median extent (pink line) and March 2019 extent (white shading); No plots available for South Pacific CTD stations

![](_page_33_Figure_5.jpeg)

![](_page_34_Figure_2.jpeg)

![](_page_34_Figure_3.jpeg)

Figure 10: Complete GEOTRACES GP17 cruise track with 2019 winter sea ice median extent (pink line) and September 2019 extent (white shading); No plots available for South Pacific CTD stations

![](_page_34_Figure_5.jpeg)